Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes.
نویسندگان
چکیده
The respiratory tract is an attractive target organ for novel diagnostic and therapeutic applications with nano-sized carriers, but their immune effects and interactions with key resident antigen-presenting cells (APCs) such as dendritic cells (DCs) and alveolar macrophages (AMs) in different anatomical compartments remain poorly understood. Polystyrene particles ranging from 20 nm to 1,000 nm were instilled intranasally in BALB/c mice, and their interactions with APC populations in airways, lung parenchyma, and lung-draining lymph nodes (LDLNs) were examined after 2 and 24 hours by flow cytometry and confocal microscopy. In the main conducting airways and lung parenchyma, DC subpopulations preferentially captured 20-nm particles, compared with 1,000-nm particles that were transported to the LDLNs by migratory CD11blow DCs and that were observed in close proximity to CD3⁺ T cells. Generally, the uptake of particles increased the expression of CD40 and CD86 in all DC populations, independent of particle size, whereas 20-nm particles induced enhanced antigen presentation to CD4⁺ T cells in LDLNs in vivo. Despite measurable uptake by DCs, the majority of particles were taken up by AMs, irrespective of size. Confocal microscopy and FACS analysis showed few particles in the main conducting airways, but a homogeneous distribution of all particle sizes was evident in the lung parenchyma, mostly confined to AMs. Particulate size as a key parameter determining uptake and trafficking therefore determines the fate of inhaled particulates, and this may have important consequences in the development of novel carriers for pulmonary diagnostic or therapeutic applications.
منابع مشابه
Lymph node trafficking and antigen presentation by endobronchial eosinophils.
Because eosinophils recruited into the airways in allergic diseases are exposed to inhaled allergens, we evaluated whether eosinophils within the endobronchial lumen can function in vivo as antigen-presenting cells for inhaled antigens. We recovered eosinophils from the airways after aerosol antigen challenge in sensitized mice or from the peritoneal cavities of IL-5 transgenic mice and fluores...
متن کاملInteraction of biomedical nanoparticles with the pulmonary immune system
Engineered nanoparticles (NPs) offer site-specific delivery, deposition and cellular uptake due to their unique physicochemical properties and were shown to modulate immune responses. The respiratory tract with its vast surface area is an attractive target organ for innovative immunomodulatory therapeutic applications by pulmonary administration of such NPs, enabling interactions with resident ...
متن کاملDistribution of Primed T Cells and Antigen-Loaded Antigen Presenting Cells Following Intranasal Immunization in Mice
Priming of T cells is a key event in vaccination, since it bears a decisive influence on the type and magnitude of the immune response. T-cell priming after mucosal immunization via the nasal route was studied by investigating the distribution of antigen-loaded antigen presenting cells (APCs) and primed antigen-specific T cells. Nasal immunization studies were conducted using the model protein ...
متن کاملFeasibility of sentinel lymph node mapping in renal cell carcinoma using intraoperative radiotracer injection
Introduction: The applicability of sentinel lymph node biopsy for early detection of metastasis in patients with renal cell carcinoma (RCC) is still in the validation phase and under investigation, which might be due to the unpredictability of the lymphatic pattern in RCC. In this study, we aimed to evaluate the feasibility and accuracy of sentinel node biopsy in patients with ...
متن کاملAKAP9 regulates activation-induced retention of T lymphocytes at sites of inflammation
The mechanisms driving T cell homing to lymph nodes and migration to tissue are well described but little is known about factors that affect T cell egress from tissues. Here, we generate mice with a T cell-specific deletion of the scaffold protein A kinase anchoring protein 9 (AKAP9) and use models of inflammatory disease to demonstrate that AKAP9 is dispensable for T cell priming and migration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2013